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Abstract

The results about the isomorphism of a quantum logic & with the logic of the projections
in a separable Hilbert space previously obtained with the introduction of the topology of
states are completed, including the case of non-separable Hilbert space, and showing that
the continuity of the antiautomorphism 8 of the division ring R, C or () determined by
& follows from the general topological assumptions on &,

1. Introduction

The introduction in a logic £ (a o-complete, orthocomplemented and
weakly modular lattice) of the so-called topology of states (see the Appendix)
allowed us, in a preceding paper (Cirelli & Cotta-Ramusino, 1973), to formu-
late conditions under which the division ring determined by % is the real field
R, the complex field C or the quaternion division ring @. The main result we
obtained can be summarised in the following theorem (Cirelli & Cotta-
Ramusino, 1973, Theorem 5.2).

Let & be alogic and let .% be endowed with the topology of states. Then:

(1) if Zis a projective logic such that every family of mutually orthogonal
points is at most countable and conditions Z;~.%5 below are satisfied,
then & is isomorphic to the projective logic Z(V,(.,.») of all linear
manifolds closed relative to the §-bilinear form (., .}, where Vis a (left)
linear space over R, Cor Q withdim V> 4;

(2) if in addition the antiautomorphism 6 of the division ring R, C or Qs
continuous then V is a separable Hilbert space over R, C or Q
respectively.

Conversely, if & is isomorphic to the logic #(#, D) of the projections in a
separable Hilbert space 7 over D (R, C or Q) with dim ## > 4, then £ isa
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projective logic such that every family of mutually orthogonal points is at
most countable, conditions .#; -~ %5 are satisfied and the automorphism 6 is
continuous.

Conditions &£ - s are the following:

(#1) s(@) =s(b) for every pure state s implies a = b, namely the set & of
pure states is separating,

(#,) for any finite element a of &, # [0, 4] is a compact subset of &,

(#5) < is second countable,

(&,) for any line I of & the set of all points of £ but one arbitrary
chosen is a connected set,

(%s) no plane of & is trivial, for any plane u of £ the intersection point
of two lines in u is a continuous function of the two lines and the
union line of two points in u is a continuous function of the two
points.

In this paper we will enlarge these results in two respects: first we shall drop
from the theorem the condition of separability of the Hilbert space, second we
shall show that the continuity of the antiautomorphism 6 follows from the
general topological assumptions on Z. Precisely we shall show that the follow-
ing theorem holds.

Theorem 1.1. Let & be alogic and let &£ be endowed with the topology of
states. A necessary and sufficient condition in order that % be isomorphic to
the logic & (#, D) of the projections in a Hilbert space £ over D(R, C or Q)
with dim s> 4 is that £ be a complete projective logic satisfying conditions
P'i- &5 below. Moreover the Hilbert space 5 is separable if and only if Z is
such that every family of mutually orthogonal points is at most countable.

Conditions £, Z5, L4 and L% are the same as £y, Lo, L4 and L5
respectively while condition &3 reads as follows:

(&%) for every finite element @ of &, ¥ [0, a] is second countable.

2. Proof of the Theorem

Let# be a Hilbert space over D (R, C or @) with dim #> 4. Then ¥ (3¢,
D) is a complete projective logic (Varadarajan, 1968, Theorem 7.40). Moreover
from the Gleason theoremt it follows that the topology of states in ¢G#, D)
coincides with the induced weak operator topology (Cirelli & Cotta-Ramusino,
1973, Theorem 4.1). On account of this we have immediately that & (3, D)
endowed with the topology of states satisfies condition &} and we can proceed
exactly in the same way as in Cirelli & Cotta-Ramusino {1973, Section 3) to
prove that & (J#, D) satisfies conditions £} and &5, while the fact that
P(H#, D) satisfies conditions £} and £} follows from the following lemma
which is a slight modification of Theorem 3.1 in Cirelli & Cotta-Ramusino
(1973).

+ The Gleason theorem holds also for non-separable Hilbert spaces. We are very much
indebted to Prof. M. Guenin for a private communication on this extension of the Gleason
theorem,
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Lemma 2.1. Let O be a projection of finite rank. Then the geometry
Z[0, 0 is a second countable compact subset of £ (5, D).t

Let now & be a logic endowed with the topology of states and let & be
isomorphic to £ (H#, D). Then from Theorem A.1 in the Appendix we have
that the topology of states in £ coincides with the topology transferred from
P, D) by the isomorphism. Therefore the logic & is a complete projective
logic satisfying conditions £{-Z5.

Conversely, let & be a complete projective logic satisfying conditions £ -
Z%. From Varadarajan (1968, Theorem 7.40) and from Cirelli & Cotta-
Ramusino (1973, Section 5) we have that & is isomorphic to the logic £ (¥,
{.,.7), where V¥ is a vector space over D(R, C or Q) with dim V=>4 and (., .}
is a @-bilinear form on V x ¥ related to the antiautomorphism & induced by
the logic on . Indeed the proof of Theorem 5.1 in Cirelli & Cotta-Ramusino
(1973) is still valid if one substitutes conditions £}~ %% for conditions &;- %s
and requires the completeness of the logic instead of the property that every
family of mutually orthogonal points is at most countable.

If we now admit that conditions £}~ %% imply that the antiautomorphism
0 is continuous, then €.,.) is an inner product and, on account of Varadarajan
(1968, Lemma 7.42), which ensures us the completeness of the space V, we
have that the logic & is isomorphic to a logic Z (4, D). Moreover, it is
obvious that S is separable if and only if the logic £ (o, ) has the property
that every family of mutually orthogonal points is at most countable.

Thus to have the complete proof of the theorem we have only to show that
conditions £1-%% imply the continuity of the antiautomorphism 6.

3. Continuity of the Antiautomorphism 6

Let & be a complete projective logic which satisfies conditions & - &%.

As we have seen in Section 2, .& is isomorphic to the projective logic #(V,
{.,.nof all {.,.)closed linear manifolds of a linear space V over D(R,C or Q)
with dim ¥ > 4. The isomorphism $- XL (V,(.,.)is constructed in the
following way.

Let £':= {a € ¥ |a finite}; £’ is a generalised geometry eventually of
infinite dimension. Let (O, P;), j € J,be a frame at O in %" If for any j € J
we fix a point £ on the axis m; = O v P; distinct from O and P; we may con-
struct the division ring D; = D;(0, E}, F;) on m; with O, Ej, P; as origin, unit

1 Proof of Lemma 2.1:

Let K = Range (Q) and let 7~ ( be the linear manifold in A () (the algebra of all
bounded operators on ) generated by the elements of & [Q, Q1. To every operator
Ae ¥ @ we can associate its restriction 4 to K. Obviously A belongs to #(K) and the
correspondence A ~» A from ¥~ o) into % (K) can be easily shown to be linear and injec-
tive, Therefore ¥, Q is a finite dimensional linear manifold of & (). Then on ¥, 0 the
induced weak, strong and uniform topologies coincide with the ‘euclidean’ topology.
Considering £ [0, Q] as a subset of ¥~ ¢ one has immediately that ZL10, 0] is second
countable and bounded; moreover, essentially by the same arguments as in the proof of
Theorem 3.1 in Cirelli & Cotta-Ramusino (1973), it can be proved that it is closed in ¥~ o
Therefore &[0, @] is second countable and compact.
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point and point at infinity respectively. All the division rings [; are isomorphic
and there exist a division ring D and a set of isomorphisms ¢; of D; onto D such
that the following diagrams are commutative

iy

D _“*——-‘)DJ

\ / (3.1)

where the isomorphism ¢y of D; with Dy is given by ¢ (X) = (X v Pyj) A my
(P; is the intersection point of the lines E; v Ej and P; v F)).

To every point Q € ¥’ not lying at infinity (in symbols: Q@ < £ %), that is
such that, for every finite subset K of J,

Q< u(K)
where
if K = @ (the void set
u(K) = f (the void set)
v B ifK+#0,
jek

we can associate the set of points {MJ-Q}, j € J, with MJ-Q given by
M2=0, V;€J, ifQ=0
M2=Qvu®—{j))rm, ifQ+0,jEK (3.2)
M2=0, ifQ#0, J¢K,

where K is any finite subset of J such that Q<O v u(K)(MjQ, j€ J, does not

depend on the choice of such a subset K (Varadarajan, 1968, Lemma 5.18)).
One has obviously

MleD;, j&J (3.3)

Let now V be the (left) free linear space over D generated by J U [},
where oo is one more element added to the set of indices J. To every point
0 € %’ such that Q < L. we can associate a vector g€ € V in the following

way
Q¢ = 0 ;
g=(N=gM=), jeI
(3.4)
g2() =1

where 1 is the unit element of D. To shorten the notation we shall write
g2 = {g(M;2), 1}. If on the contrary Q is a point belonging to £, we can
choose a point Q' <OV Q such that ' # Q and Q' # O. Then Q' < £ and
we can associate to Q the vector.

222 = {g;M;2), 0} (3.5)

where 0 is the zero element of D.
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If Z(V, D) is the generalised geometry of all finite dimensional subspaces
of V, then

D.g% Q<L
D.g22, ifo<ZLL

is a one-one collinearity preserving map of the set of all the points of the
generalised geometry %’ onto the set of all points of the generalised geometry
Z(V, D) (Varadarajan, 1968, Lemma 5.25) (remark that D.g22" does not
depend on the choice of the point Q').

The desired isomorphism { : & - Z(V,{.,.)) is given by

0—v(Q):= (3.6)

a—§(a):= {x €V |x €y (P) for some point P < a} 3.7)

Let now a,, be a fixed finite element of £ such that dima, (= dim £ [0,
a,]) = n = 4. Henceforth it will be understood that the frame (O, P;) is an
‘adapted’ one to Z£[0, a,,]. This simply means that Q and n — 1 out of theP
belong to £[0,a,] (these n — 1 points will be denoted by P, Ps, ..., P, 3)
The restriction to £ [0, a,] of the isomorphism { will be called £. Under the
ordering inherited from % and the orthocomplementation

L 210,a,] > £[0,a,], b->bT=b%hra, 3.8)

where b* is the orthocomplementation of b in &, #£[0, a,,] is a logic. On
ZL(V,,D), where V), is the n-dimensional linear space over [ given by V,, =
£(a,,) the map

L PV DY>L(V,, D), B=£(b)-Bh=£(b") (3.9)

is an orthocomplementation. Thus Z(V,,, D) is a logic and £ is an isomorphism
of Z{0,a,] with Z(V,,D).

From Theorem A.1 of the Appendix the isomorphism ¢ is also a homeo-
morphism when on 2 and £ (V, {.,.)) we introduce the topologies of states.
If on Z10,a,] and on Z(V,, D) we consider the induced topologies, § as well
as a homeomorphism,

We now proceed to the study of the antiautomorphism 8 of D associated
to the 0-bilinear form (., .> on V' x V. Let D9 be the division ring dual to DB,
V, the  space dual to ¥, and LV, D) the lattice of subspaces of ¥, (note
that Vi is considered as an n-dimensional linear space over [39). We introduce
the maps

QLW D)> LWV, D%, M->MC=QeViNx)=0,VxE M}
(3.10)
and
1. LV, D)> LV, D%,  M-—nM):=M")° (3.11)

One can verify that 1 is an isomorphism between geometries. On £ (V,, D%)
we consider the quotient topology relative to 17 and to the topology of Z(V,,,
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D), then the induced topology on D (considered as a subset of a certain line
of LV, 10)) is the euclidean topology, that is the same topology as onD.
Now we define a relation between the vectors of ¥, and V¥, We say that
xEV,isrelated toX € V.5, and writex ~X,if x #0, ¥ # 0 and n(D.x) =
DO % From Varadarajan (1968, Lemma 3.2) we know that if x € V}, and
X € V¥ are such that x ~ ¥, then forany y € ¥, such thaty #0and D.y #
D. x there exists a unique y € V¥ such that y ~ y and x — y ~X — J. Hence
for every pair (x, X) such that x ~ ¥ the following map is well defined

Tx,&':Vn‘“D'x—)V:, Tx,?c’()’)=; (3.12)

where ¥ is the unique vector such that y ~yandx — y ~% — J.

We want to construct explicitly such a vector y given any x € V,,, x # 0,
and a related vector X € V,¥ chosen in a way suitable for our purposes.

Wesetx = {x;,x,},y=nyn,i€T ={1,2,...,n— 1} and suppose
x, #0,y, #0and x, #y, (this is not a restriction because, with a suitable
change of coordinates, we can always have this situation).

We put also

g =x;"x=1{g*, 1}, i€T (3.13)
g =y'y=1{eg’ 1), i€d (3.14)

and consider the points X = ¢ 1(D.x) = £ H(D.g%)and Y= £~ 1(D. y) =
£1(D.g”) of £]0, a,]. Obviously these points do not lie at infinity and we
have, introducing their ‘coordinates’ M;X and M;¥ (see (3.2)),

g =eM™), g =eMY), €T (3.15)
Since 7 is an isomorphism, defining
G=@o5)(0), Pi=mopP), €T

we have that ©, P ) is a frame at Oin¥ (V,¥, DO) such that the points

X= (n 0 £)(X)and ¥ = (n 0 £)(Y) do not lie at infinity. The axes of this frame
are mk 0 vy P = (n © £)(m;) and on these lines we can construct the division
rings [b; = D, (0 Ei, By with O, ;= (no E)(E) and P; as origin, unit point and
point at mﬁmty respectively. Moreover between these division rings and the
division ring D9 there exist isomorphisms such that the following diagrams

are commutative

~ tp,] ~
D\ /w (3.16)
7

All the @; and ;; are suitable pro;ectmtles therefore also homeomorphisms.
In the same way as in (3.2) we associate to Xand ¥ their ‘coordinates’

M €D, and M;Y € D; with respect to the frame (0, P;) and obviously we
have

HE=@mopM™), MY =mopos"), €T  (3.17)
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Now, as in (3.4), we define the vectors §5( E€VZFand Zr? € V¥ setting
F = {G017),1%, B = (G0, 19 (3.18)

where 19 is the unit element of D®. From Varadarajan (1968, Lemma 5.25) we
have that

5~ ~% 5~ ¥

X=3@°.¥%, Y=30°%) (3.19)
where ¥ is a one-one collinearity preserving map of the set of all the points of
L(VE, DO) onto itself, namely an element of the projective group PGL(V}F)
(MacLane & Birkhoff, 1970, Chap. XII). Hence, in virtue of a very well-known

theorem of projective geometry (MacLane & Birkhoff, 1970, Chap. XII,
Theorem 17) we can write

¥(°.3%)=D°. 1@, 5(@°.3")=D°.T@") (3.20)
where I"is an element of the group GL(V;¥) of the automorphisms of ;¥
determined by ¥ up to a non-zero scalar multiple of the identity automorphism
of Vir.

Let nowz =x — y and set
gz=z;lz=(xn—yn)~l(x“y) 3.2

The point Z = £~1(D.z) = £71(D.g?) does not lie at infinity and we have,
introducing its ‘coordinates’ M;”,

g =oM?, €T (3.22)
Between the ‘coordinates’ M;Z of Z and n}ﬁ of Z= (n © £)(Z) the relation
2 =morym?), i€ (3.23)
holds and defining the vector Ez € ViEby
%% = (5017), 1% (3.24)
we can write, as above
Z=%(0°.3%)=p°.T@E%) (3.25)

Now

giz = (xn ".Yn)—l(xi - yi)=(xp - yn)wlxngix ~(xy J’n)—lyngiys
ieF (3.26)
Since the operations on the division ringsD; and D are defined by projectivi-
ties (Varadarajan, 1968, Chap. V) and 7 and § are isomorphisms, taking into
account (3.15), (3.17), (3.18), (3.22), (3.23) and (3.24), from (3.26) we
obtain
éiz = (p(xn) - p()’n))_lp(xn)giX - (p(xn) - P(yn))“lp(yn)giya ieg
3.27)
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where
(3.28)

P=¢sonoéo~‘ﬂ;1

with 5 any one index belonging to .
From (3.20) and (3.25) we have

n(D.x)=0° P (3.29)

n(D.y)=0°.FE) (3.30)

n(D. & -») =0°. F(g%) (331)

From (3.29) we infer that X ~ f‘(g'??). We choose as a related vector to x

exactly I'(¢%) and look for the unique J such that y ~  and x — y ~ ['\(3%) —
¥. Since 7 is a lattice isomorphism and D.x # Dy it follows that for every non-

zero vector V' € (. y) there exist g, b €D0, g £ 0, b # 0, such that
n(D. (x — »)) =D° . @['@*) + b5 (3.32)
If we take as 3 the vector I~“(§1~/) (see (3.30)) from (3.32) and (3.31) we have

D . @FGX) + b7 ) =D . F3%) (3.33)

Obviously we can choose 4, b such that 2 + b = 1°. Then we obtain

XY T
ag;” +bg;” =g

whence, taking into account (3.27),
=—(p(xp) — p(yn))_]p(J’n)

a=(pp) —p(¥n) o (xn),
(3.34)

The wanted vector J such that y ~ 5 and x — y ~ I'(3%) — J is now given by
(3.35)

5= bPE) = (pn) o ()T E)
Let now u!, u? and 43 be three independent vectors of ¥, and let ! € V )}
be such that u! ~ 1. Setting i = Ty1 3 (?) and %3 = Ty 52(u3) the follow-

ing map can be defined (Varadarajan, 1968, Lemma 3.9)
L:V,=Vy,

L 0, ifx =0,
X
with /€ {1, 2, 3} such that D.x s D.ul,ifx #0

R
(3.36)

For x # 0 the relation x ~ Lx holds. Thus the equation
Liex)=g(c, x)Lx (3.37)
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holds for any x # 0 and any ¢ € [D, where g(c, x) € D0 is such that g(0, x) = 0°.
In Varadarajan (1968, Lemmas 3.12 and 3.13) it is shown that in fact g{¢, x)
does not depend on x and that the map

o: D~ D°, o(e)=gle, x) (3.38)

where x is any non-zero vector of ¥y, is an isomorphism of D onto D°.
We take now u!, u? and u3 such that u,! #0,/ & {1,2,3},and p(u,') = 10
and take as a vector i7! related to u! the vector i1 = I'(g0"), where U! =
7(D.ul). Moreover we choose for the vector x in (3.37) a vector y such that
D.y#D.ul, yn #0and yn #u,t Then from (3.13)-(3.26) we have

Ly =p(yn)'@") (3.39)
and, for any ¢ # y,;?,
L(ey)=pley)DE) = p(e)o(y)T(EY) (3.40)
Therefore, from (3.27) we obtain
glo,x)=p), c#yq' (3.41)

Since p is continuous, from (3.41) it follows that the isomorphism ¢ is con-
tinuous and then that a(c) = p(c) for every c € D.

From Varadarajan (1968, Theorems 3.1, 4.1, 4.5, 4.6 and 7.40) it follows
that the antiautomorphism & is given by 8(c) = dp(c) d ™1, where d is a suitable
non-zero element of O (obviously p is now regarded as an antiautomorphism
of D). Then we can conclude that the antiautomorphism 8 is continuous.

This completes the proof of the theorem.

Appendix

Let & be any logic and & the set of pure states of %, The ‘topology of
states’ is defined in the following way.

Given any net {a,}oe 4 in & we say that {g,}‘converges’ toa € & , and
write ay > a, if for every s € £ the net {s(a,)} converges to s(a) in the usual
topology of R and take as the family of closed sets the family of the subsets
N of & which satisfy the condition: {a,} is a net in N and a, > aimplya €N

The following important theorem can be proved.

Theorem A.1. LetLand & be two logics and £ : £~ & an isomorphism.
If on & the topology of states is introduced, the quotient topology on &£
relative to £ and to the topology of & is the topology of states on 2.

Proof. Let P and # be the set of pure states on % and Z, respectively.
For any s € 2 Jet §=5 0 £~1. The correspondence s~ § obviously is a bijection
from Z onto 2.

Let us introduce in % the quotient topology relative to £ and to the topo-
logy of states on #. Then £ and £™! are continuous maps (Kelley, 1955, page
94). We can prove that every subset of £ closed in the quotient topology of
P is closed also in the topology of states of & and vice versa.
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If B is a subset of 2 closed in the quotient topology then B=§"1(B)is
closed in #. Let {@,} be a net in B converging to @ € %, namely such that
5(dy) ~ s(a) VS E P. Then {a,}, where a, = £~ 1(ao(), is a net in B converging
toa = £~1(a) since for any s € P we can write s =5 O £ and thus we have

s(ag) =5(@,) > 5@) =s(a), VsEP

Since B is closed, @ belongs to B. Therefore @ belongs to B and this shows
that B is closed in the topology of states.

Conversely if E is a subset of .Z closed in the topology of states then, setting
E=§" 1(E) for every net {a,} in £ convergmg toa € & we have that {aa},
where 2, = £(ag,), is a net in £ converging to @ = £(a) since for any § € & we
can write § =5 O £71 and thus'we have

$(Ea) =5(2a) > 5@) =5@), ViEP
Therefore @ € £ and E is closed, namely E is closed in the quotient topology.
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